Display Settings:

Format

Send to:

Choose Destination
Eukaryot Cell. 2009 Oct;8(10):1604-14. doi: 10.1128/EC.00206-09. Epub 2009 Aug 21.

The transcription factor homolog CTF1 regulates {beta}-oxidation in Candida albicans.

Author information

  • 1Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, 6431 Fannin, Houston, TX 77030, USA.

Abstract

Carbon starvation is one of the many stresses to which microbial pathogens are subjected while in the host. Pathways necessary for the utilization of alternative carbon sources, such as gluconeogenesis, the glyoxylate cycle, and beta-oxidation of fatty acids, have been shown to be required for full virulence in several systems, including the fungal pathogen Candida albicans. We have investigated the regulatory network governing alternative carbon metabolism in this organism through characterization of transcriptional regulators identified based on the model fungi, Saccharomyces cerevisiae and Aspergillus nidulans. C. albicans has homologs of the ScCAT8/AnFacB and ScADR1/AnAmdX transcription factors that regulate induction of genes encoding the proteins of gluconeogenesis, the glyoxylate cycle, and ethanol utilization. Surprisingly, C. albicans mutants lacking CAT8 or ADR1 have no apparent phenotypes and do not regulate genes for key enzymes of these pathways. Fatty acid degradation and peroxisomal biogenesis are controlled by nonhomologous regulators, OAF1/PIP2 in S. cerevisiae and FarA/FarB in A. nidulans; C. albicans is missing OAF1 and PIP2 and, instead, has a single homolog of the Far proteins, CTF1. We have shown that CTF1 is required for growth on lipids and for expression of genes necessary for beta-oxidation, such as FOX2. ctf1Delta/ctf1Delta (ctf1Delta/Delta) strains do not, however, show the pleiotropic phenotypes observed for fox2Delta/Delta mutants. The ctf1Delta/Delta mutant confers a mild attenuation in virulence, like the fox2Delta/Delta mutant. Thus, phenotypic and genotypic observations highlight important differences in the regulatory network for alternative carbon metabolism in C. albicans compared to the paradigms developed in other model fungi.

PMID:
19700635
[PubMed - indexed for MEDLINE]
PMCID:
PMC2756860
Free PMC Article

Images from this publication.See all images (8)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk