Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2009 Sep 25;284(39):26421-6. doi: 10.1074/jbc.M109.028993. Epub 2009 Aug 13.

Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7.

Author information

  • 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.


The C-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II, acts as a binding platform for various mRNA processing and histone-modifying enzymes that act co-transcriptionally. These factors are targeted to specific phosphorylation states of the CTD that predominate at different stages of transcription. Within the repeating sequence YSPTSPS, serines 2 and 5 are major phosphorylation sites, but serine 7 phosphorylation was recently discovered in mammalian cells. Here we show that CTD serine 7 is also phosphorylated in yeast and that Ser-7(P) chromatin immunoprecipitation patterns resemble those of Ser-5(P). The basal factor TFIIH can phosphorylate Ser-7 in vitro and is necessary for Ser-7(P) in vivo. Interestingly, deletion of the CTD Ser-5(P) phosphatase Rtr1 leads to an increase in Ser-5(P) but not Ser-7(P).

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk