Format

Send to:

Choose Destination
See comment in PubMed Commons below
Trends Biotechnol. 2009 Sep;27(9):522-30. doi: 10.1016/j.tibtech.2009.05.006. Epub 2009 Aug 11.

Next-generation sequencing technologies and their implications for crop genetics and breeding.

Author information

  • 1Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, A.P., India. r.k.varshney@cgiar.org

Abstract

Using next-generation sequencing technologies it is possible to resequence entire plant genomes or sample entire transcriptomes more efficiently and economically and in greater depth than ever before. Rather than sequencing individual genomes, we envision the sequencing of hundreds or even thousands of related genomes to sample genetic diversity within and between germplasm pools. Identification and tracking of genetic variation are now so efficient and precise that thousands of variants can be tracked within large populations. In this review, we outline some important areas such as the large-scale development of molecular markers for linkage mapping, association mapping, wide crosses and alien introgression, epigenetic modifications, transcript profiling, population genetics and de novo genome/organellar genome assembly for which these technologies are expected to advance crop genetics and breeding, leading to crop improvement.

PMID:
19679362
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk