Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1990 Jan 5;265(1):506-14.

Genomic organization of the human multidrug resistance (MDR1) gene and origin of P-glycoproteins.

Author information

  • 1Department of Genetics, University of Illinois, Chicago 60612.


The MDR1 gene, responsible for multidrug resistance in human cells, encodes a broad specificity efflux pump (P-glycoprotein). P-glycoprotein consists of two similar halves, each half including a hydrophobic transmembrane region and a nucleotide-binding domain. On the basis of sequence homology between the N-terminal and C-terminal halves of P-glycoprotein, we have previously suggested that this gene arose by duplication of a primordial gene. We have now determined the complete intron/exon structure of the MDR1 gene by direct sequencing of cosmid clones and enzymatic amplification of genomic DNA segments. The MDR1 gene includes 28 introns, 26 of which interrupt the protein-coding sequence. Although both halves of the protein-coding sequence are composed of approximately the same number of exons, only two intron pairs, both within the nucleotide-binding domains, are located at conserved positions in the two halves of the protein. The other introns occur at different locations in the two halves of the protein and in most cases interrupt the coding sequence at different positions relative to the open reading frame. These results suggest that the P-glycoprotein arose by fusion of genes for two related but independently evolved proteins rather than by internal duplication.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk