Display Settings:

Format

Send to:

Choose Destination
Appl Phys Lett. 2009 Jul 13;95(2):21111. Epub 2009 Jul 17.

Employing two distinct photonic crystal resonances to improve fluorescence enhancement.

Abstract

Surface-bound fluorescence assays such as microarrays have emerged as a prominent technology in current life sciences research and are currently performed on optically passive substrates such as glass microscope slides. We present an alternative approach using photonic crystal substrates exhibiting resonant reflections. In this work, we design and fabricate a photonic crystal with a TM-polarized resonance at the cyanine-5 excitation wavelength and a TE-polarized resonance spectrally overlapping this fluorophore's emission spectrum. The former resonance increases the excitation of the fluorophore through enhanced electric field intensities, while the latter resonance redirects a proportion of emitted light toward the detection instrumentation. Spots of cyanine-5 conjugated streptavidin on the photonic crystal demonstrate a 60-fold increase in fluorescence intensity and a 42-fold increase in signal-to-noise ratio relative to a glass slide.

PMID:
19668706
[PubMed]
PMCID:
PMC2723896
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk