DNA electrophoresis in a sparse ordered post array

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 1):061904. doi: 10.1103/PhysRevE.79.061904. Epub 2009 Jun 4.

Abstract

We present a study of the electrophoresis of long DNA in a strong electric field through a hexagonal array of cylindrical microscale posts spaced such that the pore size is commensurate with equilibrium coil size of the DNA. Experimental mobility, dispersivity, and videomicroscopy data indicate that the DNA frequently collide with the posts, contradicting previous Brownian dynamics studies using a uniform electric field. We demonstrate via simulations that the frequent collisions, which are essential to separations in these devices, are due to the nonuniform electric field, highlighting the importance of accounting for electric-field gradients when modeling DNA transport in microfluidic devices.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation
  • DNA / chemistry*
  • DNA / radiation effects*
  • Electrophoresis / methods*
  • Microfluidics / methods*
  • Models, Chemical*
  • Radiation Dosage
  • Transfection / methods*

Substances

  • DNA