Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2009 Oct 2;284(40):27544-56. doi: 10.1074/jbc.M109.042036. Epub 2009 Aug 5.

Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency.

Author information

  • 1Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.

Abstract

The Zap1 transcription factor is a central player in the response of yeast to changes in zinc status. Previous studies identified over 80 genes activated by Zap1 in zinc-limited cells. In this report, we identified 36 genes repressed in a zinc- and Zap1-responsive manner. As a result, we have identified a new mechanism of Zap1-mediated gene repression whereby transcription of the MET3, MET14, and MET16 genes is repressed in zinc-limited cells. These genes encode the first three enzymes of the sulfate assimilation pathway. We found that MET30, encoding a component of the SCF(Met30) ubiquitin ligase, is a direct Zap1 target gene. MET30 expression is increased in zinc-limited cells, and this leads to degradation of Met4, a transcription factor responsible for MET3, MET14, and MET16 expression. Thus, Zap1 is responsible for a decrease in sulfate assimilation in zinc-limited cells. We further show that cells that are unable to down-regulate sulfate assimilation under zinc deficiency experience increased oxidative stress. This increased oxidative stress is associated with an increase in the NADP(+)/NADPH ratio and may result from a decrease in NADPH-dependent antioxidant activities. These studies have led to new insights into how cells adapt to nutrient-limiting growth conditions.

PMID:
19656949
[PubMed - indexed for MEDLINE]
PMCID:
PMC2785683
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk