Format

Send to

Choose Destination
See comment in PubMed Commons below
Opt Express. 2009 Aug 3;17(16):13346-53.

Optical phase erasure based on FWM in HNLF enabling format conversion from 320-Gb/s RZDQPSK to 160-Gb/s RZ-DPSK.

Author information

  • 1National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan. *gwlu@nict.go.jp

Abstract

Through four-wave mixing (FWM) process in highly-nonlinear fiber (HNLF) or semiconductor device, the phase-modulation depth of one converted FWM component could be doubled compared with that of the original input signal. Therefore, with a multilevel phase-modulated signal and a CW light as inputs, after FWM process in a nonlinear media, phase pattern (0, pi) carried in the input multilevel phase-modulated signal will not be transferred to one converted FWM component, which could be referred to as an optical phase erasure process. We experimentally demonstrated format conversion from 320-Gb/s return-to-zero differential quadrature phase-shift keying (RZ-DQPSK) to 160-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) through the proposed all-optical phase erasure scheme. The phase information carried in the converted binary RZ-DPSK is logically equal to the input Q-component, or a logical XOR operation result between I and Q components of the input RZ-DQPSK, which correspond to a serial or parallel DQPSK transmitter for the input RZ-DQPSK signal. It can be applied to erase a binary tributary from a multilevel modulation format.

PMID:
19654739
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk