Format

Send to

Choose Destination
See comment in PubMed Commons below
FASEB J. 2009 Nov;23(11):3851-64. doi: 10.1096/fj.09-132415. Epub 2009 Jul 28.

Histone deacetylases facilitate sodium/calcium exchanger up-regulation in adult cardiomyocytes.

Author information

  • 1Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA.

Abstract

It is becoming increasingly evident that histone deacetylases (HDACs) have a prominent role in the alteration of gene expression during the growth remodeling process of cardiac hypertrophy. HDACs are generally viewed as corepressors of gene expression. However, we demonstrate that class I and class II HDACs play an important role in the basal expression and up-regulation of the sodium calcium exchanger (Ncx1) gene in adult cardiomyocytes. Treatment with the HDAC inhibitor trichostatin A (TSA) prevented the pressure-overload-stimulated up-regulation of Ncx1 expression. Overexpression of HDAC5 resulted in the dose-dependent up-regulation of basal and alpha-adrenergic stimulated Ncx1 expression. We show that Nkx2.5 recruits HDAC5 to the Ncx1 promoter, where HDAC5 complexes with HDAC1. Nkx2.5 also interacts with transcriptional activator p300, which is recruited to the Ncx1 promoter. We demonstrate that when Nkx2.5 is acetylated, it is found associated with HDAC5, whereas deacetylated Nkx2.5 is in complex with p300. Notably, TSA treatment prevents p300 from being recruited to the endogenous Ncx1 promoter, resulting in the repression of Ncx1 expression. We propose a novel model for Ncx1 regulation in which deacetylation of Nkx2.5 is required for the recruitment of p300 and results in up-regulation of exchanger expression.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk