Format

Send to

Choose Destination
See comment in PubMed Commons below
J Exp Bot. 2009;60(13):3959-72. doi: 10.1093/jxb/erp229. Epub 2009 Jul 27.

Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension.

Author information

  • 1Department of Biology, University of Antwerp, Antwerpen, Belgium.

Abstract

Xyloglucan endotransglucosylase/hydrolases (XTHs) are enzymes involved in the modification of load-bearing cell wall components. They cleave xyloglucan chains and, often, re-form bonds to the non-reducing ends of available xyloglucan molecules in plant primary cell walls. The enzymic properties and effects on root growth of two Arabidopsis thaliana XTHs belonging to subgroup I/II, that are predominantly expressed in root hairs and in non-elongating zones of the root, were analysed here. AtXTH14 and AtXTH26 were recombinantly produced in Pichia and subsequently purified. Both proteins were found to exhibit xyloglucan endotransglucosylase (XET; EC 2.4.1.207) but not xyloglucan endohydrolase (XEH; EC 3.2.1.151) activity. Their endotransglucosylase activity was at least 70x greater on xyloglucan rather than on mixed-linkage beta-glucan. Differences were found in pH- and temperature-dependence as well as in acceptor-substrate preferences. Furthermore, the specific activity of XET was approximately equal for the two enzymes. Removal of N-linked sugar residues by Endo H treatment reduced XET activity to 60%. Constant-load extensiometry experiments revealed that the enzymes reduce the extension in a model system of heat-inactivated isolated cell walls. When given to growing roots, either of these XTH proteins reduced cell elongation in a concentration-dependent manner and caused abnormal root hair morphology. This is the first time that recombinant and purified XTHs added to growing roots have exhibited a clear effect on cell elongation. It is proposed that these specific XTH isoenzymes play a role in strengthening the side-walls of root-hairs and cell walls in the root differentiation zone after the completion of cell expansion.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk