Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Pharm Sci. 2009 Oct 8;38(3):230-7. doi: 10.1016/j.ejps.2009.07.006. Epub 2009 Jul 24.

Nanomedicines for active targeting: physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells.

Author information

  • 1School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland.

Abstract

Paclitaxel (Tx)-loaded anti-HER2 immunonanoparticles (NPs-Tx-HER) were prepared by the covalent coupling of humanized monoclonal anti-HER2 antibodies (trastuzumab, Herceptin) to Tx-loaded poly (dl-lactic acid) nanoparticles (NPs-Tx) for the active targeting of tumor cells that overexpress HER2 receptors. The physico-chemical properties of NPs-Tx-HER were compared to unloaded immunonanoparticles (NPs-HER) to assess the influence of the drug on anti-HER2 coupling to the NP surface. The immunoreactivity of sulfo-MBS activated anti-HER2 mAbs and the in vitro efficacy of NPs-Tx-HER were tested on SKOV-3 ovarian cancer cells that overexpress HER2 antigens. Tx-loaded nanoparticles (NPs-Tx) obtained by a salting-out method had a size of 171+/-22 nm (P.I.=0.1) and an encapsulation efficiency of about of 78+/-10%, which corresponded to a drug loading of 7.8+/-0.8% (w/w). NPs-Tx were then thiolated and conjugated to activated anti-HER2 mAbs to obtain immunonanoparticles of 237+/-43 nm (P.I.=0.2). The influence of the activation step on the immunoreactivity of the mAbs was tested on SKOV-3 cells using 125I-radiolabeled mAbs, and the activity of the anti-HER2 mAbs was minimally affected after sulfo-MBS functionalization. Approximately 270 molecules of anti-HER2 mAbs were bound per nanoparticle. NPs-Tx-HER exhibited a zeta potential of 0.2+/-0.1 mV. The physico-chemical properties of the Tx-loaded immunonanoparticles were very similar to unloaded immunonanoparticles, suggesting that the encapsulation of the drug did not influence the coupling of the mAbs to the NPs. No drug loss was observed during the preparation process. DSC analysis showed that encapsulated Tx is in an amorphous or disordered-crystalline phase. These results suggest that Tx is entrapped in the polymeric matrix and not adsorbed to the surface of the NPs. In vitro studies on SKOV-3 ovarian cancer cells demonstrated the greater cytotoxic effect of NPs-Tx-HER compared to other Tx formulations. The results showed that at 1 ng Tx/ml, the viability of cells incubated with drug encapsulated in NP-Tx-HER was lower (77.32+/-5.48%) than the viability of cells incubated in NPs-Tx (97.4+/-12%), immunonanoparticles coated with Mabthera, as irrelevant mAb (NPs-Tx-RIT) (93.8+/-12%) or free drug (92.3+/-9.3%).

PMID:
19632322
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk