Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 2009 Aug;175(2):825-34. doi: 10.2353/ajpath.2009.080982. Epub 2009 Jul 16.

IL-21 contributes to JAK3/STAT3 activation and promotes cell growth in ALK-positive anaplastic large cell lymphoma.

Author information

  • 1Department of Laboratory Medicine and Pathology, Cross Cancer Institute and University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2.

Abstract

Interleukin (IL)-21 has been reported to both stimulate cell growth and promote survival in benign lymphoid cells and several types of hematopoietic neoplasms. It induces JAK3/STAT3 signaling, a biologically important cellular pathway activated in most cases of anaplastic lymphoma kinase (ALK)-expressing anaplastic large cell lymphoma (ALK(+)ALCL). Therefore, we hypothesize that IL-21 may contribute to JAK3/STAT3 activation and cell growth in ALK(+)ALCL. By reverse transcription-PCR, we found consistent expression of IL-21 receptor (IL-21R) in all ALK(+)ALCL cell lines and frozen tumors examined. IL-21 was also consistently expressed in ALK(+)ALCL tumors, although its mRNA was detectable in only one of three cell lines tested. By immunohistochemistry, we examined 10 paraffin-embedded ALK(+)ALCL tumors; all cases were positive for both IL-21 and IL-21R in these neoplastic cells. IL-21 signaling is biologically significant in ALK(+)ALCL since the addition of recombinant IL-21 enhanced the activation of JAK3/STAT3 and significantly increased cell growth in ALK(+)ALCL cell lines. However, small interfering RNA down-regulation of IL-21R significantly decreased both STAT3 activation and cell growth. IL-21R expression is not linked to nucleophosmin-ALK since forced expression of nucleophosmin-ALK and small interfering RNA down-regulation of nucleophosmin-ALK did not significantly change the expression of either IL-21R or IL-21. Our findings thus support the enhancement of JAK3/STAT3 activation and cell growth in ALK(+)ALCL via IL-21 signaling. These results further support the concept that constitutive activation of STAT3 in these tumors is multifactorial.

PMID:
19608866
[PubMed - indexed for MEDLINE]
PMCID:
PMC2716977
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk