Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2009 Jul 15;29(28):9002-10. doi: 10.1523/JNEUROSCI.1706-09.2009.

Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling.

Author information

  • 1Department of Neurosurgery, New York University School of Medicine, New York, New York 10016, USA.

Abstract

Hydrogen peroxide (H(2)O(2)) is emerging as a ubiquitous small-molecule messenger in biology, particularly in the brain, but underlying mechanisms of peroxide signaling remain an open frontier for study. For example, dynamic dopamine transmission in dorsolateral striatum is regulated on a subsecond timescale by glutamate via H(2)O(2) signaling, which activates ATP-sensitive potassium (K(ATP)) channels to inhibit dopamine release. However, the origin of this modulatory H(2)O(2) has been elusive. Here we addressed three possible sources of H(2)O(2) produced for rapid neuronal signaling in striatum: mitochondrial respiration, monoamine oxidase (MAO), and NADPH oxidase (Nox). Evoked dopamine release in guinea-pig striatal slices was monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry. Using direct fluorescence imaging of H(2)O(2) and tissue analysis of ATP, we found that coapplication of rotenone (50 nM), a mitochondrial complex I inhibitor, and succinate (5 mM), a complex II substrate, limited H(2)O(2) production, but maintained tissue ATP content. Strikingly, coapplication of rotenone and succinate also prevented glutamate-dependent regulation of dopamine release, implicating mitochondrial H(2)O(2) in release modulation. In contrast, inhibitors of MAO or Nox had no effect on dopamine release, suggesting a limited role for these metabolic enzymes in rapid H(2)O(2) production in the striatum. These data provide the first demonstration that respiring mitochondria are the primary source of H(2)O(2) generation for dynamic neuronal signaling.

PMID:
19605638
[PubMed - indexed for MEDLINE]
PMCID:
PMC2892101
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk