Format

Send to:

Choose Destination
See comment in PubMed Commons below
Oncogene. 2009 Sep 24;28(38):3390-400. doi: 10.1038/onc.2009.203. Epub 2009 Jul 13.

Lysyl oxidase propeptide inhibits prostate cancer cell growth by mechanisms that target FGF-2-cell binding and signaling.

Author information

  • 1Department of Periodontology and Oral Biology, Boston University Henry M Goldman School of Dental Medicine, MA 02118, USA.

Abstract

Enhanced RAS signaling and decreased androgen dependence of prostate cancer cells accompany poor clinical outcomes. Elevated autocrine fibroblast growth factors 2 (FGF-2) signaling promotes prostate cancer cell growth and survival. Expression of lysyl oxidase (LOX) inhibits RAS transforming activity. LOX is secreted as 50 kDa pro-LOX protein and then undergoes extracellular proteolytic processing to form approximately 30 kDa LOX enzyme and approximately 18 kDa propeptide (LOX-PP). We have previously shown that LOX-PP inhibits breast cancer cell transformation and tumor formation, but mechanisms of action of LOX-PP have not been fully elucidated. Here we report that LOX expression is reduced in prostate cancer cell lines and that recombinant LOX-PP protein inhibits serum-stimulated DNA synthesis and MEK/ERK and PI3K/AKT pathways in DU 145 and PC-3 androgen-independent cell lines. In DU 145 cells, treatment with a pharmacologic FGF-receptor inhibitor or a neutralizing anti-FGFR1 antibody mimicked LOX-PP inhibition of serum-stimulated DNA synthesis. FGF-2-stimulated DNA synthesis, ERK1/2, AKT and FRS2alpha activation were found all to be inhibited by LOX-PP in DU 145 cells. LOX-PP reduced specific binding of FGF-2 to DU 145 cells, suggesting that LOX-PP targets FGF signaling at the receptor. Interestingly, PC-3 cells did not respond to FGF-2, consistent with previous reports. We conclude that LOX-PP inhibits proliferation of DU 145 cells by interfering with FGFR(s) binding and signaling, and that LOX-PP has other mechanisms of action in PC-3 cells.

PMID:
19597471
[PubMed - indexed for MEDLINE]
PMCID:
PMC2753565
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk