Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Neurochem Int. 2009 Sep;55(5):265-74. doi: 10.1016/j.neuint.2009.03.010. Epub 2009 Mar 26.

Neuroprotection by co-treatment and post-treating with calcitriol following the ischemic and excitotoxic insult in vivo and in vitro.

Author information

  • 1Institute of Pharmacology, Pol. Acad. Sci., Smetna 12, 31-343 Cracow, Poland.


Several in vivo and in vitro studies have demonstrated the neuroprotective potential of pretreatment with 1alpha,25-dihydroxyvitamin D3 (calcitriol). The aim of the present study was to determine the effectiveness of calcitriol administered in vivo after a brain ischemic episode in the rat model of perinatal asphyxia, or when co-applied with or without delay during 24-h exposure of mouse hippocampal, neocortical and cerebellar neuronal cultures to glutamate on their 7th and 12th day in vitro (7 DIV and 12 DIV, respectively). Calcitriol was also administered after acute exposure of rat cerebellar neurons to glutamate. In 7-day-old rat pups subjected to hypoxia-ischemia, acute application of calcitriol in a single dose of 2 microg/kg, 30 min after termination of the insult, or subchronic, 7-day post-treatment with calcitriol, effectively reduced brain damage. The level of neuroprotection exceeded that achieved by hypoxic preconditioning used as the reference neuroprotective method. The results of in vitro experiments revealed the ability of calcitriol to reduce excitotoxicity in a manner dependent on the origin of the neuronal cells, their stage of maturation in culture and the duration of exposure to the excitotoxic insult before calcitriol application. Calcitriol was neuroprotective when it was administered together with glutamate or even after a delay of up to 6h during 24-h excitotoxic challenge of hippocampal and neocortical, but not cerebellar neuronal cultures. Application of calcitriol to cultured cerebellar granule neurons after acute exposure to glutamate was ineffective. In 12 DIV hippocampal cell cultures, 50 nM calcitriol inhibited glutamate-induced caspase-3 activity, while only 100 nM concentrations were effective in 7 DIV cultures. We ascribe the protective effects of calcitriol to the rapid modulation of mechanisms that are instrumental in the direct anti-apoptotic, neuroprotective action of this compound.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk