Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Lung Cell Mol Physiol. 2009 Sep;297(3):L496-505. doi: 10.1152/ajplung.90539.2008. Epub 2009 Jul 2.

1alpha,25(OH)2D3 and its 3-epimer promote rat lung alveolar epithelial-mesenchymal interactions and inhibit lipofibroblast apoptosis.

Author information

  • 1Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.

Abstract

Although alveolar wall thinning has been attributed to apoptosis of interstitial lung lipofibroblasts (LFs), the underlying molecular mechanism(s) remains unknown. Although the physiological vitamin D steroid hormone 1alpha,25(OH)(2)D(3) (1,25D) has been suggested as a local paracrine/autocrine effector of fetal lung maturation and is known to affect fibroblast apoptosis, its effects on LF apoptosis are unknown. We determined the role of 1,25D and its metabolite, C-3-epimer (3-epi-1,25D), on LF and alveolar type II (ATII) cell differentiation, proliferation, and apoptosis. Embryonic day 19 Sprague-Dawley fetal rat lung LFs and ATII cells were treated with 1,25D or 3-epi-1,25D (1 x 10(-10) to 1 x 10(-8) M) for 24 h, and cell proliferation, apoptosis, and differentiation were assessed. Both 1,25D and 3-epi-1,25D exhibited dose-dependent increases in expression of the key homeostatic epithelial-mesenchymal differentiation markers, increased LF and ATII cell proliferation, and decreased apoptosis. Furthermore, rat pups administered 1,25D from postnatal days 0 to 14 showed increased expressions of key LF and ATII cell differentiation markers, increased Bcl-2-to-Bax ratio as an index of decreased spontaneous alveolar LF and ATII cell apoptosis, increased alveolar count, and a paradoxical increase in septal thickness. We conclude that spatial- and temporal-specific actions of vitamin D play a critical role in perinatal lung maturation by stimulating key alveolar epithelial-mesenchymal interactions and by modulating LF proliferation/apoptosis. These data not only provide the biological rationale for the presence of an alveolar vitamin D paracrine system, but also provide the first integrated molecular mechanism for increased surfactant synthesis and alveolar septal thinning during perinatal lung maturation.

PMID:
19574420
[PubMed - indexed for MEDLINE]
PMCID:
PMC2739775
Free PMC Article

Images from this publication.See all images (10)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk