Display Settings:

Format

Send to:

Choose Destination
Nanotechnology. 2009 Jul 22;20(29):295501. doi: 10.1088/0957-4484/20/29/295501. Epub 2009 Jul 1.

SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array.

Author information

  • 1Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, People's Republic of China.

Abstract

A patterned Ag structure was grown on a Si nanoporous pillar array (Si-NPA) by an immersion plating method, and its surface-enhanced Raman scattering (SERS) activity toward adenine was studied. It was shown that two kinds of Ag structures were grown on Si-NPA, a continuous film covering the Si-NPA substrate and composed of Ag nanocrystallites (nc-Ag), and a quasi-regular, interconnected network composed of loop-chains of sub-micron Ag crystallites surrounding the porous Si pillars. The SERS detection of low-concentration adenine solution was performed by using Ag/Si-NPA as active substrates, in which significantly enhanced Raman signals were observed. The SERS enhancement was attributed to the active spacing sites formed between the Ag particles and the nc-Ag which met the optimal size for causing a SERS effect. Based on the measured SERS spectra, the adsorption mode of adenine molecules on Ag particles was deduced. These results indicated that Ag/Si-NPA might be a promising active substrate for SERS detection of low-concentration bio-molecules.

PMID:
19567965
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IOP Publishing Ltd.
    Loading ...
    Write to the Help Desk