Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Stress Chaperones. 2010 Jan;15(1):101-13. doi: 10.1007/s12192-009-0126-9. Epub 2009 Jun 26.

The mechanism whereby heat shock induces apoptosis depends on the innate sensitivity of cells to stress.

Author information

  • 1Centre de recherche en cancérologie de l'Université Laval, Québec, QC, Canada.

Abstract

The cellular response to heat shock (HS) is a paradigm for many human diseases collectively known as "protein conformation diseases" in which the accumulation of misfolded proteins induces cell death. Here, we analyzed how cells having a different apoptotic threshold die subsequent to a treatment with HS. Cells with a low apoptotic threshold mainly induced apoptosis through activation of conventional stress kinase signaling pathways. By contrast, cells with a high apoptotic threshold also died by apoptosis but likely after the accumulation of heat-aggregated proteins as revealed by the formation of aggresomes in these cells, which were associated with the generation of atypical nuclear deformations. Inhibition of the proteasome or expression of an aggregation prone protein produced similar nuclear alterations. Furthermore, elevated levels of chaperones markedly suppressed both HS-induced nuclear deformations and apoptosis induced upon protein aggregation whereas they had little effect on stress kinase-mediated apoptosis. We conclude that the relative contribution of stress signaling pathways and the accumulation of protein aggregates to cell death by apoptosis is related to the innate sensitivity of cells to deadly insults.

PMID:
19557548
[PubMed - indexed for MEDLINE]
PMCID:
PMC2866974
Free PMC Article

Images from this publication.See all images (9)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk