Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2009 Aug 15;81(16):6868-78. doi: 10.1021/ac900881z.

Quantitative microplate-based respirometry with correction for oxygen diffusion.

Author information

  • 1Buck Institute for Age Research, Novato, CA, USA. agerencser@buckinstitute.org.

Abstract

Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O(2) is consumed by the specimen, atmospheric O(2) leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O(2) but also store substantial amounts of gas. O(2) flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O(2)] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O(2)]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems.

PMID:
19555051
[PubMed - indexed for MEDLINE]
PMCID:
PMC2727168
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk