Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2007 Dec 10;15(25):17273-82.

A reconfigurable architecture for continuously variable optical slow-wave delay lines.


A novel reconfigurable architecture based on slow-wave propagation in integrated optical ring resonators is proposed for the realization of variable optical delay lines. A continuously variable delay is achieved by combining a coarse discrete (digital) delay, provided by a coupled resonator slow-wave structure, with a fine continuous (analog) delay given by a cascaded ring- resonator phase-shifter. The reflective configuration of the structure enables a simple, accurate and robust tuning of the delay and provides a footprint reduction by a factor 2 with respect to conventional coupled resonator optical waveguides. Proof-of-concept devices realized in 4.4% silicon oxynitride waveguides and activated by a thermal control are discussed. Experimental results demonstrate, in both spectral and time domain, a continuously variable delay, from zero to 800 ps (2 bit fractional delay), on a 2.5 Gbit/s NRZ signal, with less than 8 dB insertion loss and less than 5 mm2 device footprint.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk