Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2007 Nov 12;15(23):15387-401.

The von Neumann picture: a new representation for ultrashort laser pulses.


In recent years, the use of joint time-frequency representations to characterize and interpret shaped femtosecond laser pulses has proven to be very useful. However, the number of points in a joint time-frequency representation is daunting as compared with those in either the frequency or time representation. In this article we introduce the use of the von Neumann representation, in which a femtosecond pulse is represented on a discrete lattice of evenly spaced time-frequency points using a non-orthogonal Gaussian basis. We show that the information content in the von Neumann representation using a lattice of radicalN points in time and radicalN points in frequency is exactly the same as in a frequency (or time) array of N points. Explicit formulas are given for the forward and reverse transformation between an N-point frequency signal and the von Neumann representation. We provide numerical examples of the forward and reverse transformation between the two representations for a variety of different pulse shapes; in all cases the original pulse is reconstructed with excellent precision. The von Neumann representation has the interpretational advantages of the Husimi representation but requires a bare minimum number of points and is stably and conveniently inverted; moreover, it avoids the periodic boundary conditions of the Fourier representation.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk