Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2007 Oct 1;15(20):12735-42.

Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer.


We demonstrate an opto-fluidic ring resonator dye laser using highly efficient energy transfer. The active lasing material consists of a donor and acceptor mixture and flows in a fused silica capillary whose circular cross section forms a ring resonator and supports the whispering gallery modes (WGMs) of high Q-factors (>107). The excited states are created in the donor and transferred to the acceptor through the fluorescence resonant energy transfer (FRET), whose emission is coupled into the WGM. Due to the high energy transfer efficiency and high Q-factors, the acceptor exhibits a lasing threshold as low as 0.3 muJ/mm2. We further analyze the energy transfer mechanisms and find that non-radiative Förster transfer is the dominant effect to support the acceptor lasing. FRET lasers using cascade energy transfer and using quantum dots (QDs) as the donor are also presented. Our study will not only lead to development of novel microfluidic lasers with low lasing thresholds and excitation/emission flexibility, but also open an avenue for future laser intra-cavity bio/chemical sensing.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk