Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Melanoma Res. 2009 Oct;19(5):301-8. doi: 10.1097/CMR.0b013e32832e40fe.

Simultaneous tissue factor expression and phosphatidylserine exposure account for the highly procoagulant pattern of melanoma cell lines.

Author information

  • 1Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Abstract

A correlation between cancer and hypercoagulability has been described for more than a century. Patients with cancer are at increased risk for thrombotic complications, and the clotting initiator protein, tissue factor (TF), is possibly involved in this process. In addition to TF, the presence of negatively charged phospholipids, particularly phosphatidylserine (PS), is necessary to support some of the blood-clotting reactions. There are few reports describing PS exposure by tumor cells. In this study, we characterized the procoagulant properties of the murine B16F10 and the human WM-266-4 melanoma cell lines. Flow cytometry analyses showed constitutive TF expression by both cell lines, in contrast to negative staining observed for the nontumorigenic melanocyte lineage, melan-A. In addition, tumor cells accelerate plasma clotting in a number-dependent manner. For WM-266-4, this ability was partially reversed by an anti-TF antibody but not by aprotinin, a nonspecific serine-protease inhibitor. Furthermore, flow-cytometric analyses showed the presence of PS at the outer leaflet of both cell lines. This phenomenon was determinant for the assembly of the intrinsic tenase (FIXa/FVIIIa) and prothrombinase (FXa/FVa) complexes, resulting in the activation of FX to FXa and prothrombin to thrombin, respectively. As a result, incubation of WM-266-4 with human plasma produces robust thrombin generation. In conclusion, simultaneous TF expression and PS exposure are responsible for the highly procoagulant pattern of the aggressive melanoma cell lines B16F10 and WM-266-4. Therefore, these cell lines might be regarded as useful models for studying the role of blood coagulation proteins in tumor biology.

PMID:
19550359
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk