Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Comput Neurosci. 2009 Dec;27(3):553-67. doi: 10.1007/s10827-009-0169-z. Epub 2009 Jun 23.

A large-scale model of the locust antennal lobe.

Author information

  • 1The Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA. Mainak.Patel@med.nyu.edu

Abstract

The antennal lobe (AL) is the primary structure within the locust's brain that receives information from olfactory receptor neurons (ORNs) within the antennae. Different odors activate distinct subsets of ORNs, implying that neuronal signals at the level of the antennae encode odors combinatorially. Within the AL, however, different odors produce signals with long-lasting dynamic transients carried by overlapping neural ensembles, suggesting a more complex coding scheme. In this work we use a large-scale point neuron model of the locust AL to investigate this shift in stimulus encoding and potential consequences for odor discrimination. Consistent with experiment, our model produces stimulus-sensitive, dynamically evolving populations of active AL neurons. Our model relies critically on the persistence time-scale associated with ORN input to the AL, sparse connectivity among projection neurons, and a synaptic slow inhibitory mechanism. Collectively, these architectural features can generate network odor representations of considerably higher dimension than would be generated by a direct feed-forward representation of stimulus space.

PMID:
19548077
[PubMed - indexed for MEDLINE]
PMCID:
PMC4070380
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk