Electromagnetic cloaking by layered structure of homogeneous isotropic materials

Opt Express. 2007 Sep 3;15(18):11133-41. doi: 10.1364/oe.15.011133.

Abstract

Electromagnetic invisibility cloak requires material with anisotropic distribution of the constitutive parameters as first proposed by Pendry et al. [Science 312, 1780 (2006)]. In this paper, we proposed an electromagnetic cloak structure that does not require metamaterials with subwavelength structured inclusions to realize the anisotropy or inhomogeneity of the material parameters. We constructed a concentric layered structure of alternating homogeneous isotropic materials that can be treated as an effective medium with the required radius-dependent anisotropy. With proper design of the permittivity or the thickness ratio of the alternating layers, we demonstrated the low-reflection and power-flow bending properties of the proposed cloaking structure through rigorous analysis of the scattered electromagnetic fields. The proposed cloaking structure could be possibly realized by normal materials, therefore may lead to a practical path to an experimental demonstration of electromagnetic cloaking, especially in the optical range.