Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Appl Environ Microbiol. 2009 Aug;75(15):5037-46. doi: 10.1128/AEM.00398-09. Epub 2009 Jun 19.

Comparative genome-wide transcriptional profiling of Azorhizobium caulinodans ORS571 grown under free-living and symbiotic conditions.

Author information

  • 1Biotechnology Research Center, University of Tokyo, Yayoi, Bunkyo-ku, Japan.

Abstract

The whole-genome sequence of the endosymbiotic bacterium Azorhizobium caulinodans ORS571, which forms nitrogen-fixing nodules on the stems and roots of Sesbania rostrata, was recently determined. The sizes of the genome and symbiosis island are 5.4 Mb and 86.7 kb, respectively, and these sizes are the smallest among the sequenced rhizobia. In the present study, a whole-genome microarray of A. caulinodans was constructed, and transcriptomic analyses were performed on free-living cells grown in rich and minimal media and in bacteroids isolated from stem nodules. Transcriptional profiling showed that the genes involved in sulfur uptake and metabolism, acetone metabolism, and the biosynthesis of exopolysaccharide were highly expressed in bacteroids compared to the expression levels in free-living cells. Some mutants having Tn5 transposons within these genes with increased expression were obtained as nodule-deficient mutants in our previous study. A transcriptomic analysis was also performed on free-living cells grown in minimal medium supplemented with a flavonoid, naringenin, which is one of the most efficient inducers of A. caulinodans nod genes. Only 18 genes exhibited increased expression by the addition of naringenin, suggesting that the regulatory mechanism responding to the flavonoid could be simple in A. caulinodans. The combination of our genome-wide transcriptional profiling and our previous genome-wide mutagenesis study has revealed new aspects of nodule formation and maintenance.

PMID:
19542345
[PubMed - indexed for MEDLINE]
PMCID:
PMC2725507
Free PMC Article

Images from this publication.See all images (1)Free text

FIG. 1.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk