Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2009 Sep;191(17):5510-7. doi: 10.1128/JB.00562-09. Epub 2009 Jun 19.

Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase.

Author information

  • 1Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.


The respiratory chain of Escherichia coli is usually considered a device to conserve energy via the generation of a proton motive force, which subsequently may drive ATP synthesis by the ATP synthetase. It is known that in this system a fixed amount of ATP per oxygen molecule reduced (P/O ratio) is not synthesized due to alternative NADH dehydrogenases and terminal oxidases with different proton pumping stoichiometries. Here we show that P/O ratios can vary much more than previously thought. First, we show that in wild-type E. coli cytochrome bo, cytochrome bd-I, and cytochrome bd-II are the major terminal oxidases; deletion of all of the genes encoding these enzymes results in a fermentative phenotype in the presence of oxygen. Second, we provide evidence that the electron flux through cytochrome bd-II oxidase is significant but does not contribute to the generation of a proton motive force. The kinetics support the view that this system is as an energy-independent system gives the cell metabolic flexibility by uncoupling catabolism from ATP synthesis under non-steady-state conditions. The nonelectrogenic nature of cytochrome bd-II oxidase implies that the respiratory chain can function in a fully uncoupled mode such that ATP synthesis occurs solely by substrate level phosphorylation. As a consequence, the yield with a carbon and energy source can vary five- to sevenfold depending on the electron flux distribution in the respiratory chain. A full understanding and control of this distribution open new avenues for optimization of biotechnological processes.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk