Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochim Biophys Acta. 2009 Oct;1790(10):1067-74. doi: 10.1016/j.bbagen.2009.06.007. Epub 2009 Jun 16.

The TOR pathway comes of age.

Author information

  • 1Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.

Abstract

Studies in a variety of model organisms indicate that nutrient signaling is tightly coupled to longevity. In nutrient replete conditions, organisms develop, grow, and age quickly. When nutrients become sparse as with dietary restriction, growth and development decline, stress response pathways become induced and organisms live longer. Considerable effort has been devoted to understanding the molecular events mediating lifespan extension by dietary restriction. One central focus has been on nutrient-responsive signal transduction pathways including insulin/IGF-1, AMP kinase, protein kinase A and the TOR pathway. Here we describe the increasingly prominent links between TOR signaling and aging in invertebrates. Longevity studies in mammals are not published to date. Instead, we highlight studies in mouse models, which indicate that dampening the TOR pathway leads to widespread protection from an array of age-related diseases.

PMID:
19539012
[PubMed - indexed for MEDLINE]
PMCID:
PMC3981532
Free PMC Article

Images from this publication.See all images (1)Free text

Figure 1
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk