Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cryobiology. 2010 Feb;60(1):11-22. doi: 10.1016/j.cryobiol.2009.05.007. Epub 2009 Jun 16.

Thermodynamic aspects of vitrification.

Author information

  • 21st Century Medicine, Inc., 14960 Hilton Drive, Fontana, CA 92336, USA. wowk@21cm.com

Abstract

Vitrification is a process in which a liquid begins to behave as a solid during cooling without any substantial change in molecular arrangement or thermodynamic state variables. The physical phenomenon of vitrification is relevant to both cryopreservation by freezing, in which cells survive in glass between ice crystals, and cryopreservation by vitrification in which a whole sample is vitrified. The change from liquid to solid behavior is called the glass transition. It is coincident with liquid viscosity reaching 10(13) Poise during cooling, which corresponds to a shear stress relaxation time of several minutes. The glass transition can be understood on a molecular level as a loss of rotational and translational degrees of freedom over a particular measurement timescale, leaving only bond vibration within a fixed molecular structure. Reduced freedom of molecular movement results in decreased heat capacity and thermal expansivity in glass relative to the liquid state. In cryoprotectant solutions, the change from liquid to solid properties happens over a approximately 10 degrees C temperature interval centered on a glass transition temperature, typically near -120 degrees C (+/-10 degrees C) for solutions used for vitrification. Loss of freedom to quickly rearrange molecular position causes liquids to depart from thermodynamic equilibrium as they turn into a glass during vitrification. Residual molecular mobility below the glass transition temperature allows glass to very slowly contract, release heat, and decrease entropy during relaxation toward equilibrium. Although diffusion is practically non-existent below the glass transition temperature, small local movements of molecules related to relaxation have consequences for cryobiology. In particular, ice nucleation in supercooled vitrification solutions occurs at remarkable speed until at least 15 degrees C below the glass transition temperature.

Copyright 2009 Elsevier Inc. All rights reserved.

PMID:
19538955
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk