Send to

Choose Destination
See comment in PubMed Commons below
Opt Express. 2007 Mar 19;15(6):3396-408.

Self-imaging silicon Raman amplifier.


We propose a new type of waveguide optical amplifier. The device consists of collinearly propagating pump and amplified Stokes beams with periodic imaging of the Stokes beam due to the Talbot effect. The application of this device as an Image preamplifier for Mid Wave Infrared (MWIR) remote sensing is discussed and its performance is described. Silicon is the preferred material for this application in MWIR due to its excellent transmission properties, high thermal conductivity, high damage threshold and the mature fabrication technology. In these devices, the Raman amplification process also includes four-wave-mixing between various spatial modes of pump and Stokes signals. This phenomenon is unique to nonlinear interactions in multimode waveguides and places a limit on the maximum achievable gain, beyond which the image begins to distort. Another source of image distortion is the preferential amplification of Stokes modes that have the highest overlap with the pump. These effects introduce a tradeoff between the gain and image quality. We show that a possible solution to this trade-off is to restrict the pump into a single higher order waveguide mode.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk