Display Settings:

Format

Send to:

Choose Destination
Opt Express. 2007 Feb 5;15(3):767-78.

Recollision dynamics and time delay in strong-field double ionization.

Abstract

Three-dimensional classical ensembles are employed to study recollision dynamics in double ionization of atoms by 780-nm intense lasers. After recollision one electron typically remains bound to the atom for a portion of a laser cycle, during which time the nucleus strongly influences its direction of motion. The electron then escapes over a suppressed barrier, with its final momentum depending critically on the laser phase at escape. The other electron remains unbound after collision, and typically drifts out in a momentum hemisphere opposite from its motion just after the collision. Several example trajectories at intensity 0.4 PW/cm(2) with various time delays between recollision and ionization are presented.

PMID:
19532300
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk