High efficiency photonic crystal based wavelength demultiplexer

Opt Express. 2006 Aug 21;14(17):7931-42. doi: 10.1364/oe.14.007931.

Abstract

A highly efficient design of a two-channel wavelength demultiplexer in the visible region is presented with finite-difference time-domain simulations. The design process is described in detail with particular attention to the challenges inherent in fabrication of an actual device. A 2D triangular lattice photonic crystal with 75nm air pores in a silicon nitride planar waveguide provides the confinement for visible light. The device losses due to fabrication errors such as stitching misalignment of write fields during e-beam lithography and variation in air pore diameters from etching are modeled using realistic parameters from initial fabrication runs. These simulation results will be used to guide our next generation design of high efficiency photonic crystal based demultiplexing devices.