Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Opin Neurobiol. 2009 Apr;19(2):146-53. doi: 10.1016/j.conb.2009.05.013. Epub 2009 Jun 10.

Dendritic spine formation and stabilization.

Author information

  • 1Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Abstract

Formation, elimination and remodeling of excitatory synapses on dendritic spines represent a continuous process that shapes the organization of synaptic networks during development. The molecular mechanisms controlling dendritic spine formation and stabilization therefore critically determine the rules of network selectivity. Recent studies have identified new molecules, such as Ephrins and Telencephalin that regulate filopodia motility and their transformation into dendritic spines. Trans-synaptic signaling involving nitric oxide, protease, adhesion molecules and Rho GTPases further controls contact formation or the structural remodeling of spines and their stability. Evidence also suggests that activity and induction of plasticity participate to the selection of persistent spines. Together these new data provide a better understanding of the mechanisms, speed and steps leading to the establishment of a stable excitatory synapse.

PMID:
19523814
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk