Send to:

Choose Destination
See comment in PubMed Commons below
Plant Signal Behav. 2007 Mar;2(2):79-85.

Calcium signaling network in plants: an overview.

Author information

  • 1Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; New Delhi, India.


Calcium ion (Ca(2+)) is one of the very important ubiquitous intracellular second messenger molecules involved in many signal transduction pathways in plants. The cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) have been found to increased in response to many physiological stimuli such as light, touch, pathogenic elicitor, plant hormones and abiotic stresses including high salinity, cold and drought. This Ca(2+) spikes normally result from two opposing reactions, Ca(2+) influx through channels or Ca(2+) efflux through pumps. The removal of Ca(2+) from the cytosol against its electrochemical gradient to either the apoplast or to intracellular organelles requires energized 'active' transport. Ca(2+)-ATPases and H(+)/Ca(2+) antiporters are the key proteins catalyzing this movement. The increased level of Ca(2+) is recognised by some Ca(2+)-sensors or calcium-binding proteins, which can activate many calcium dependent protein kinases. These kinases regulate the function of many genes including stress responsive genes, resulted in the phenotypic response of stress tolerance. Calcium signaling is also involved in the regulation of cell cycle progression in response to abiotic stress. The regulation of gene expression by cellular calcium is also crucial for plant defense against various stresses. However, the number of genes known to respond to specific transient calcium signals is limited. This review article describes several aspects of calcium signaling such as Ca(2+) requiremant and its role in plants, Ca(2+) transporters, Ca(2+)-ATPases, H(+)/ Ca(2+)-antiporter, Ca(2+)-signature, Ca(2+)-memory and various Ca(2+)-binding proteins (with and without EF hand).


Ca2+ channel; Ca2+-dependent protein kinases; Ca2+-transporters; Ca2+/H+ antiport; Calcium binding proteins; EF hand motifs; calcium memory; calcium sensors; calcium signatures; plant signal transduction

Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk