Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis

Plant Signal Behav. 2007 Mar;2(2):74-8. doi: 10.4161/psb.2.2.4073.

Abstract

Due to their wall-associated pectin metabolism, growing plant cells emit significant amounts of the one-carbon alcohol methanol. Pink-pigmented microbes of the genus Methylobacterium that colonize the surfaces of leaves (epiphytes) are capable of growth on this volatile C1-compound as sole source of carbon and energy. In this article the results of experiments with germ-free (gnotobiotic) sporophytes of angiosperms (sunflower, maize) and gametophytes of bryophytes (a moss and two liverwort species) are summarized. The data show that methylobacteria do not stimulate the growth of these angiosperms, but organ development in moss protonemata and in thalli of liverworts is considerably enhanced. Since methylobacteria produce and secrete cytokinins and auxin, a model of plant-microbe-interaction (symbiosis) is proposed in which the methanol-consuming bacteria are viewed as coevolved partners of the gametophyte that determine its growth, survival and reproduction (fitness). This symbiosis is restricted to the haploid cells of moisture-dependent "living fossil" plants; it does not apply to the diploid sporophytes of higher embryophytes, which are fully adapted to life on land and apparently produce sufficient amounts of endogenous phytohormones.

Keywords: coevolution; epiphytes; methylobacteria; phyllosphere; phytohormones; plant-microbe interaction; symbiosis.