Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2006 Jun 12;14(12):5524-34.

Self-phase-modulation in submicron silicon-on-insulator photonic wires.

Abstract

We measure the transmission of ps-pulses through silicon-on-insulator submicron waveguides for excitation wavelengths between 1400 and 1650 nm and peak powers covering four orders of magnitude. Self-phase-modulation induced spectral broadening is found to be significant at coupled peak powers of even a few tens of mW. The nonlinear-index coefficient, extracted from the experimental data, is estimated as n(2) ~ 5*10(-18) m(2)/W at 1500 nm. The experimental results show good agreement with model calculations that take into account nonlinear phase shift, first- and second order dispersion, mode confinement, frequency dispersion of n(2), and dynamics of two-photon-absorption-generated free carriers. Comparison with theory indicates that an observed twofold increase of spectral broadening between 1400 and 1650 nm can be assigned to the dispersion of n(2) as well as first order- rather than second-order dispersion effects. The analysis of pulse broadening, spectral shift and transmission saturation allows estimating a power threshold for nonlinearity-induced signal impairment in nanophotonic devices.

PMID:
19516720
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk