Send to

Choose Destination
See comment in PubMed Commons below
J Orthop Res. 2009 Dec;27(12):1612-8. doi: 10.1002/jor.20932.

TRITON-X is most effective among three decellularization agents for ACL tissue engineering.

Author information

  • 1Sports Medicine Research Laboratory, Department of Orthopedic Surgery, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Enders 1016, Boston, Massachusetts 02115, USA.


Ruptures of the anterior cruciate ligament (ACL) are still associated with high rates of long-term complications, even in patients undergoing modern, state-of-the-art replacement. Tissue-engineering approaches have been shown to be of value in improving treatment of ACL ruptures. However, the success of tissue-engineering procedures depends on the choice of an appropriate biomaterial. Decellularized ACL tissue potentially combines the structural composition of the targeted tissue with a reduced risk of graft rejection or disease transmission. In this study, we tested the effectiveness of currently available decellularization methods based on TRITON-X, sodium dodecyl sulfate (SDS), and trypsin. After identifying the most effective decellularization method, the capacity for reseeding with ACL fibroblasts was studied. All decellularization protocols reduced DNA content, with TRITON-X treatment having the greatest effect. Concurrently, decellularization did not affect tissue collagen or total protein content, but did decrease glycosaminoglycan content. TRITON-X also resulted the least glycosaminoglycan depletion. Porcine ACL tissue after decellularization with TRITON-X could be successfully reseeded with human ACL fibroblasts as demonstrated by steady DNA content and increasing pro-collagen expression.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk