Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
IEEE Trans Neural Syst Rehabil Eng. 2009 Aug;17(4):339-45. doi: 10.1109/TNSRE.2009.2024310. Epub 2009 Jun 5.

Active microelectronic neurosensor arrays for implantable brain communication interfaces.

Author information

  • 1Division of Engineering, Brown University, Providence, RI 02912, USA. yoon-kyu_song@brown.edu

Abstract

We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a cortical microelectrode array to an external computer for neural control applications. Our implantable microsystem enables 16-channel broadband neural recording in a nonhuman primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including radio frequency by induction, or infrared light via photovoltaic conversion. As of the time of this report, the implant has been tested as a subchronic unit in nonhuman primates ( approximately 1 month), yielding robust spike and broadband neural data on all available channels.

PMID:
19502132
[PubMed - indexed for MEDLINE]
PMCID:
PMC2921652
Free PMC Article

Images from this publication.See all images (7)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society Icon for PubMed Central
    Loading ...
    Write to the Help Desk