Format

Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2005 Jun 13;13(12):4507-18.

Depth-resolved optic axis orientation in multiple layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-OCT).

Abstract

Enhanced polarization-sensitive optical coherence tomography (EPS-OCT) is a noninvasive cross-sectional imaging technique capable of quantifying with high sensitivity the optically anisotropic properties of fibrous tissues. We present a method to measure the depth-resolved optic axis orientations in superficial and deep regions of multiple-layered form-birefringent tissue. Additionally, the bulk-optic EPS-OCT instrument provides anatomical fiber direction referenced absolutely to the laboratory frame, in contrast with fiber-based PS-OCT instruments which provide relative optic axis orientation measurements. Results presented on ex vivo murine tail tendon and porcine annulus fibrosis indicate that the method iscapable of characterizing depth-resolved fiber direction [ theta(z)], form-birefringence [Deltan(z)], and form-biattenuance [Delta chi(z)] for at least 10 successive lamellae and a depth of 0.52 mm into the intervertebral disc. Noninvasive assessment of optic axis orientation by EPS-OCT provides increased contrast in images of multiple-layered media and may improve the understanding of fibrous tissue ultrastructure and the diseases or traumas that affect fibrous tissues.

PMID:
19495365
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk