Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Genes Dev. 2009 Jun 1;23(11):1351-63. doi: 10.1101/gad.1781909.

Dynamic and complex transcription factor binding during an inducible response in yeast.

Author information

  • 1Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.


Complex biological processes are often regulated, at least in part, by the binding of transcription factors to their targets. Recently, considerable effort has been made to analyze the binding of relevant factors to the suite of targets they regulate, thereby generating a regulatory circuit map. However, for most studies the dynamics of binding have not been analyzed, and thus the temporal order of events and mechanisms by which this occurs are poorly understood. We globally analyzed in detail the temporal order of binding of several key factors involved in the salt response of yeast to their target genes. Analysis of Yap4 and Sko1 binding to their target genes revealed multiple temporal classes of binding patterns: (1) constant binding, (2) rapid induction, (3) slow induction, and (4) transient induction. These results demonstrate that individual transcription factors can have multiple binding patterns and help define the different types of temporal binding patterns used in eukaryotic gene regulation. To investigate these binding patterns further, we also analyzed the binding of seven other key transcription factors implicated in osmotic regulation, including Hot1, Msn1, Msn2, Msn4, Skn7, and Yap6, and found significant coassociation among the different factors at their gene targets. Moreover, the binding of several key factors was correlated with distinct classes of Yap4- and Sko1-binding patterns and with distinct types of genes. Gene expression studies revealed association of Yap4, Sko1, and other transcription factor-binding patterns with different gene expression patterns. The integration and analysis of binding and expression information reveals a complex dynamic and hierarchical circuit in which specific combinations of transcription factors target distinct sets of genes at discrete times to coordinate a rapid and important biological response.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk