Format

Send to:

Choose Destination
See comment in PubMed Commons below
Matrix Biol. 2009 Jul;28(6):311-23. doi: 10.1016/j.matbio.2009.05.002. Epub 2009 May 27.

Maturational alterations in gap junction expression and associated collagen synthesis in response to tendon function.

Author information

  • 1Department of Veterinary Clinical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire AL9 7TA, United Kingdom. nyoung@rvc.ac.uk

Abstract

Energy-storing tendons including the equine superficial digital flexor tendon (SDFT) contribute to energetic efficiency of locomotion at high-speed gaits, but consequently operate close to their physiological strain limits. Significant evidence of exercise-induced microdamage has been found in the SDFT which appears not to exhibit functional adaptation; the degenerative changes have not been repaired by the tendon fibroblasts (tenocytes), and are proposed to accumulate and predispose the tendon to rupture during normal athletic activity. The anatomically opposing common digital extensor tendon (CDET) functions only to position the digit, experiencing significantly lower levels of strain and is rarely damaged by exercise. A number of studies have indicated that tenocytes in the adult SDFT are less active in collagen synthesis and turnover than those in the immature SDFT or the CDET. Gap junction intercellular communication (GJIC) is known to be necessary for strain-induced collagen synthesis by tenocytes. We postulate therefore that expression of GJ proteins connexin 43 and 32 (Cx43; Cx32), GJIC and associated collagen expression levels are high in the SDFT and CDET of immature horses, when the SDFT in particular grows significantly in cross-sectional area, but reduce significantly during maturation in the energy-storing tendon only. The hypothesis was tested using tissue from the SDFT and CDET of foetuses, foals, and young adult Thoroughbred horses. Cellularity and the total area of both Cx43 and Cx32 plaques/mm(2) of tissue reduced significantly with maturation in each tendon. However, the total Cx43 plaque area per tenocyte significantly increased in the adult CDET. Evidence of recent collagen synthesis in the form of levels of neutral salt-soluble collagen, and collagen type I mRNA was significantly less in the adult compared with the immature SDFT; procollagen type I amino-propeptide (PINP) and procollagen type III amino-propeptide (PIIINP) levels per mm(2) of tissue and PINP expression per tenocyte also decreased with maturation in the SDFT. In the CDET PINP and PIIINP expression per tenocyte increased in the adult, and exceeded those in the adult SDFT. The level of PINP per mm(2) was greater in the adult CDET than in the SDFT despite the higher cellularity of the latter tendon. In the adult SDFT, levels of PIIINP were greater than those of PINP, suggesting relatively greater synthesis of a weaker form of collagen previously associated with microdamage. Tenocytes in monolayers showed differences in Cx43 and Cx32 expression compared with those in tissue, however there were age- and tendon-specific phenotypic differences, with a longer time for 50% recovery of fluorescence after photobleaching in adult SDFT cells compared with those from the CDET and immature SDFT. As cellularity reduces following growth in the SDFT, a failure of the remaining tenocytes to show a compensatory increase in GJ expression and collagen synthesis may explain why cell populations are not able to respond to exercise and to repair microdamage in some adult athletes. Enhancing GJIC in mature energy-storing tendons could provide a strategy to increase the cellular synthetic and reparative capacity.

PMID:
19481603
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk