Send to:

Choose Destination
See comment in PubMed Commons below
Exp Hematol. 2009 Aug;37(8):924-36. doi: 10.1016/j.exphem.2009.05.007. Epub 2009 May 27.

Enhanced generation of hematopoietic cells from human hepatocarcinoma cell-stimulated human embryonic and induced pluripotent stem cells.

Author information

  • 1Terry Fox Laboratory, British Columbia Cancer Agency, BC, Canada.



Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) constitute unique sources of pluripotent cells, although the molecular mechanisms involved in their differentiation into specific lineages are just beginning to be defined. Here we evaluated the ability of MEDII (medium conditioned by HepG2 cells, a human hepatocarcinoma cell line) to selectively enhance generation of mesodermal derivatives, including hematopoietic cells, from hESCs and hiPSCs.


Test cells were exposed to MEDII prior to being placed in conditions that promote embryoid body (EB) formation. Hematopoietic activity was measured by clonogenic assays, flow cytometry, quantitative real-time polymerase chain reaction of specific transcript complementary DNAs and the ability of cells to repopulate sublethally irradiated nonobese diabetic/severe combined immunodeficient interleukin-2 receptor gamma-chain-null mice for almost 1 year.


Exposure of both hESCs and hiPSCs to MEDII induced a rapid and preferential differentiation of hESCs into mesodermal elements. Subsequently produced EBs showed a further enhanced expression of transcripts characteristic of multiple mesodermal lineages, and a concurrent decrease in endodermal and ectodermal cell transcripts. Frequency of all types of clonogenic hematopoietic progenitors in subsequently derived EBs was also increased. In vivo assays of MEDII-treated hESC-derived EBs also showed they contained cells able to undertake low-level but longterm multilineage repopulation of primary and secondary nonobese diabetic/severe combined immunodeficient interleukin-2 receptor gamma-chain-null mice.


MEDII treatment of hESCs and hiPSCs alike selectively enhances their differentiation into mesodermal cells and allows subsequent generation of detectable levels of hematopoietic progenitors with in vitro and in vivo differentiating activity.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk