Send to

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2009 Jul;20(14):3374-89. doi: 10.1091/mbc.E09-01-0085. Epub 2009 May 28.

Estrogen inhibits ATR signaling to cell cycle checkpoints and DNA repair.

Author information

  • 1Department of Medicine, University of California, Irvine, Irvine CA 92717, USA.


DNA damage activates the ataxia telangiectasia-mutated and Rad3-related (ATR) kinase signal cascade. How this system is restrained is not understood. We find that in estrogen receptor (ER)-positive breast cancer cells, UV or ionizing radiation and hydroxyurea rapidly activate ATR-dependent phosphorylation of endogenous p53 and Chk1. 17-beta-estradiol (E(2)) substantially blocks ATR activity via plasma membrane-localized ERalpha. E(2)/ER reduces the enhanced association of ATR andTopBP1 proteins that follows DNA damage and strongly correlates to ATR activity. E(2) inhibits ATR activation through rapid PI3K/AKT signaling: AKT phosphorylates TopBP1 at Serine 1159, thereby preventing the enhanced association of ATR with TopBP1 after DNA damage. E(2) also inhibits Claspin:Chk1 protein association via AKT phosphorylation of Chk1, preventing Chk1 signaling to the G2/M checkpoint. ATR-phosphorylation of p53 induces p21 transcription, prevented by E(2)/ER. E(2) delays the assembly and prolongs the resolution of gammaH2AX and Rad51 nuclear foci and delays DNA repair. E(2)/ER also increases the chromosomal damage seen from cell exposure to IR. Therefore, the restraint of ATR cascade activation may be a novel estrogen action relevant to breast cancer.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk