Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomaterials. 2009 Sep;30(26):4309-17. doi: 10.1016/j.biomaterials.2009.04.049. Epub 2009 May 28.

Three-dimensional reconstituted extracellular matrix scaffolds for tissue engineering.

Author information

  • 1Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, #04-01, Singapore 138669.

Abstract

The extracellular matrix (ECM) is a rich meshwork of proteins and proteoglycans. Besides assuming a cell adhesive and structural support role, the ECM also helps to sequester and present growth factors to cells. ECM derived from tissues has been used as biological scaffolds for tissue engineering. In contrast, it has been difficult to employ ECM derived from cell lines as scaffolds due to its lack of form and structure. We have developed a mild, aqueous-based method for incorporating cell line derived ECM into biological scaffolds based on polyelectrolyte complexation, using the example of ECM from MC-3T3, a mouse preosteoblast cell line. A DNase step was incorporated in the ECM isolation procedure to further purify it of genetic material. Immunohistochemistry of fibers incorporated with MC-3T3 ECM reveal the presence of the ECM components, collagen type I, collagen type IV, fibronectin and heparan sulfate, on their surface. Reconstituted ECM scaffolds retained the cell-adhesion characteristics of the ECM, as demonstrated by 'reseeding' the ECM-secreting cell on the scaffolds. Human mesenchymal stem cells (hMSCs) were seeded onto the fibrous scaffolds incorporated with MC-3T3 ECM, and implanted subcutaneously into SCID mice. After 4 weeks of implantation, histological evidence showed that the hMSC seeded ECM scaffolds had induced bone formation at the ectopic site.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk