Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Opt Express. 2004 May 31;12(11):2404-22.

Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.

Abstract

Ultrahigh-resolution optical coherence tomography uses broadband light sources to achieve axial image resolutions on the few micron scale. Fourier domain detection methods enable more than an order of magnitude increase in imaging speed and sensitivity, thus overcoming the sensitivity limitations inherent in ultrahigh-resolution OCT using standard time domain detection. Fourier domain methods also provide direct access to the spectrum of the optical signal. This enables automatic numerical dispersion compensation, a key factor in achieving ultrahigh image resolutions. We present ultrahigh-resolution, high-speed Fourier domain OCT imaging with an axial resolution of 2.1 ìm in tissue and 16,000 axial scans per second at 1024 pixels per axial scan. Ultrahigh-resolution spectral domain OCT is shown to provide a ~100x increase in imaging speed when compared to ultrahigh-resolution time domain OCT. In vivo imaging of the human retina is demonstrated. We also present a general technique for automatic numerical dispersion compensation, which is applicable to spectral domain as well as swept source embodiments of Fourier domain OCT.

PMID:
19475077
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk