Send to:

Choose Destination
See comment in PubMed Commons below
BMC Biol. 2009 May 26;7:26. doi: 10.1186/1741-7007-7-26.

Heterologous cross-seeding mimics cross-species prion conversion in a yeast model.

Author information

  • 1Department of Biological Sciences, Chicago, IL 60607, USA.



Prions are self-perpetuating, infectious, aggregated proteins that are associated with several neurodegenerative diseases in mammals and heritable traits in yeast. Sup35p, the protein determinant of the yeast prion [PSI+], has a conserved C terminal domain that performs the Sup35p function and a prion domain that is highly divergent. Prions formed by chimeras of the prion domain of various species fused to the C domain of Saccharomyces cerevisiae exhibit a 'species barrier', a phenomenon first observed in mammals, and often fail to transmit the prion state to chimeras with prion domains of other species.


We focus on the chimera containing the prion domain of Pichia methanolica and examine how tight the 'species barrier' is between the chimera and S. cerevisiae. Although either of two Q/N-rich prions, [PSI+] or [PIN+], enhances the formation of the chimeric prion, [CHI+PM], neither a non-Q/N-rich prion nor a non-prion Q-rich aggregate promotes the formation of [CHI+PM]. [CHI+PM] has many features characteristic of yeast prions: aggregation, cytoplasmic transmission and a two-level protein structure. [CHI+PM] formed in the presence of [PSI+] can propagate independently of [PSI+] and forms at least two different variants of the prion, suggesting the generation and not transmission of new prion seeds.


Although the sequence similarity between the S. cerevisiae Q/N-rich prion determinants and the P. methanolica prion domain is low, we find that the chimera containing the prion domain of P. methanolica can occasionally be cross-seeded by [PSI+] to mimic crossing the species barrier, to form the [CHI+PM] prion. Our data suggests that crossing the barrier occurs by a de novo formation of the foreign chimeric prion. Thus, the species barrier appears to be crossed by a heterologous seeding mechanism, wherein the infected prion protein uses the pre-existing seed as an inefficient template.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk