Send to

Choose Destination
See comment in PubMed Commons below
Opt Express. 2009 May 25;17(11):8879-91.

Slow light and band gaps in metallodielectric cylinder arrays.

Author information

  • 1Department of Physics and Division of Engineering, Brown University, 184 Hope St., Providence, RI 02912, USA.


We consider two-dimensional three-component photonic crystals wherein one component is modeled as a drude-dispersive metal. It is found that the dispersion relation of light in this environment depends critically on the configuration of the metallic and dielectric components. In particular, for the case of an incident electromagnetic wave with electric field vector parallel to the axis of the cylinders it is shown that the presence of dielectric shells covering the metallic cylinders leads to a closing of the structural band gap with increased filling factor, as would be expected for a purely dielectric photonic crystal. For the same polarization, the photonic band structure of an array of metallic shell cylinders with dielectric cores do not show the closing of the structural band gap with increased filling factor of the metallic component. In this geometry, the photonic band structure contains bands with very small values of group velocity with some bands having a maximum of group velocity as small as .05c.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Write to the Help Desk