Send to:

Choose Destination
See comment in PubMed Commons below
Bone. 2009 Sep;45(3):466-72. doi: 10.1016/j.bone.2009.05.015. Epub 2009 May 22.

Bone creep can cause progressive vertebral deformity.

Author information

  • 1Department of Mechanical Engineering, University of Bath, Bath, UK.



Vertebral deformities in elderly people are conventionally termed "fractures", but their onset is often insidious, suggesting that time-dependent (creep) processes may also be involved. Creep has been studied in small samples of bone, but nothing is known about creep deformity of whole vertebrae, or how it might be influenced by bone mineral density (BMD). We hypothesise that sustained compressive loading can cause progressive and measurable creep deformity in elderly human vertebrae.


27 thoracolumbar "motion segments" (two vertebrae and the intervening disc and ligaments) were dissected from 20 human cadavers aged 42-91 yrs. A constant compressive force of approximately 1.0 kN was applied to each specimen for either 0.5 h or 2 h, while the anterior, middle and posterior heights of each of the 54 vertebral bodies were measured at 1 Hz using a MacReflex 2D optical tracking system. This located 6 reflective markers attached to the lateral cortex of each vertebral body, with resolution better than 10 microm. Experiments were at laboratory temperature, and polythene film was used to minimise water loss. Volumetric BMD was calculated for each vertebral body, using DXA to measure mineral content, and water immersion for volume.


In the 0.5 h tests, creep deformation in the anterior, middle and posterior vertebral cortex averaged 4331, 1629 and 614 micro-strains respectively, where 10,000 micro-strains represents 1% loss in height. Anterior creep strains exceeded posterior (P<0.01) so that anterior wedging of the vertebral bodies increased, by an average 0.08 degrees (STD 0.14 degrees ). Similar results were obtained after 2 h, indicating that creep rate slowed considerably with time. Less than 40% of the creep strain was recovered after 2 h. Increases in anterior wedging during the 0.5 h creep test were inversely proportional to BMD, but only in a selected sub-set of 20 specimens with average BMD<0.15 g/cm3 (P=0.042). Creep deformation caused more than 5% height loss in four vertebrae, three of which had radiographic signs of pre-existing damage.


Sustained loading can cause progressive anterior wedge deformity in elderly human vertebrae, even in the absence of fracture.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk