Format

Send to

Choose Destination
See comment in PubMed Commons below
Mitochondrion. 2009 Jun;9(3):180-5. doi: 10.1016/j.mito.2009.01.010. Epub 2009 Jan 30.

Mutation in MTO1 involved in tRNA modification impairs mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae.

Author information

  • 1Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7016, Cincinnati, Ohio 45229, USA.

Abstract

The yeast MTO1 gene encodes an evolutionarily conserved protein for the biosynthesis of the 5-carboxymethylaminomethyl group of cmnm(5)s(2)U in the wobble position of mitochondrial tRNA. However, mto1 null mutant expressed the respiratory deficient phenotype only when coupled with the C1409G mutation of mitochondrial 15S rRNA. To further understand the role of MTO1 in mitochondrial RNA metabolism, the yeast mto1 null mutants carrying either wild-type (P(S)) or 15S rRNA C1409G allele (P(R)) have been characterized by examining the steady-state levels, aminoacylation capacity of mitochondrial tRNA, mitochondrial gene expression and petite formation. The steady-state levels of tRNA(Lys), tRNA(Glu), tRNA(Gln), tRNA(Leu), tRNA(Gly), tRNA(Arg) and tRNA(Phe) were decreased significantly while those of tRNA(Met) and tRNA(His) were not affected in the mto1 strains carrying the P(S) allele. Strikingly, the combination of the mto1 and C1409G mutations gave rise to the synthetic phenotype for some of the tRNAs, especially in tRNA(Lys), tRNA(Met) and tRNA(Phe). Furthermore, the mto1 strains exhibited a marked reduction in the aminoacylation levels of mitochondrial tRNA(Lys), tRNA(Leu), tRNA(Arg) but almost no effect in those of tRNA(His). In addition, the steady-state levels of mitochondrial COX1, COX2, COX3, ATP6 and ATP9 mRNA were markedly decreased in mto1 strains. These data strongly indicate that unmodified tRNA caused by the deletion of MTO1 gene caused the instability of mitochondrial tRNAs and mRNAs and an impairment of aminoacylation of mitochondrial tRNAs. Consequently, the deletion of MTO1 gene acts in synergy with the 15S rRNA C1409G mutation, leading to the loss of COX1 synthesis and subsequent respiratory deficient phenotype.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk