Format

Send to:

Choose Destination
See comment in PubMed Commons below
Langmuir. 2009 Aug 18;25(16):9045-50. doi: 10.1021/la900810g.

Stability of soft colloidal particles in a salt-free medium.

Author information

  • 1Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan 64002. liubo@yuntech.edu.tw

Abstract

The stability of a salt-free dispersion containing soft spherical colloidal particles is investigated theoretically. Here, a particle comprises a rigid core and an ion-penetrable membrane layer; the ionic species in the liquid phase come solely from those dissociated from the functional groups in the membrane layer. We show that, similar to the case of a salt-free rigid dispersion, the total energy, which comprises the electrical energy and the van der Waals energy, is always positive far away from the surface of a particle and does not have a secondary minimum. Both the Derjaguin approximation for the estimation the electrical energy of two spheres and the criteria for the critical coagulation concentration in the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory are inapplicable. If the molar concentration of the fixed charge in the membrane layer exceeds ca. 0.1 M, the stability of a dispersion remains roughly the same. The maximum allowable particle concentration for a stable dispersion for the case of soft particles is lower than that for the case of the corresponding rigid particles.

PMID:
19459685
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk